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H I G H L I G H T S

• Performed multi-objective design of microvascular battery cooling panels.

• Combined IGFEM gradient-based optimization with NNC method.

• Created Pareto front of maximum temperature and pressure drop.

• Designs optimized with prescribed pump power or prescribed flow rate.

• Optimizations performed with localized heating.
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A B S T R A C T

Building on a recently developed optimization method based on an interface-enriched generalized finite element
method, multiple objective functions are considered for the optimization of 2D networks of microchannels
embedded in battery-cooling panels. The objective functions considered in this study are a differentiable al-
ternative to the maximum temperature (the p-mean of the temperature), the pressure drop and the variance of
the temperature. The ε-constraint method and the normalized normal constraint method are used to generate the
pressure-temperature Pareto optimal front of the multi-objective optimization problem. The effects of different
operating constraints/conditions such as localization of heat sources, prescribed pump power and imposed flow
rate on the optimal designs are investigated. In addition to the topology of the embedded network, the cross
sections of the microchannels are also introduced as design parameters to further improve the pressure drop of
the designs. The resulting variable-cross-section optimized design is validated with experiment.

1. Introduction

Typical battery packaging found in electric vehicles consists of li-
thium-ion cells alternating with cooling panels and protective layers
[1,2]. In operation, the cell pouches produce a substantial amount of
heat that needs to be removed by active cooling. To prevent the dete-
rioration of the battery, its temperature should be kept below ap-
proximately 40 °C [3]. Among the various strategies available for
cooling, the most effective appears to be liquid cooling (see [4] for
references) achieved by circulating a liquid coolant in channels em-
bedded in panels typically made of aluminum. In addition to regulating

the battery temperature, the battery packaging also contains protective
layers (typically, fiberglass or steel) that shield the battery from damage
in the event of a crash.

A novel battery packaging system based on microvascular compo-
sites has been proposed recently [4,5]. In this approach, the battery
cells are placed between microvascular composite panels, with each
panel providing both active cooling and structural protection to the
battery. Due to the high strength, stiffness and energy absorbing ability
of carbon fiber composites, the proposed packaging is expected to
provide superior crash protection at lower weight and volume com-
pared to conventional packaging.
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The design of the embedded channel network is a crucial factor in
the performance of cooling panels. Many designs such as parallel, bi-
furcating/tree-like, serpentine, spiral, coiled and bifurcating-parallel
hybrid have been proposed for cooling panels [6–9]. Computational
tools such as topology optimization [10] and discrete topology opti-
mization connecting lattice points in space [11] allow designs to be
built from scratch. However, they often produce designs that appear too
complicated for large-scale manufacturing. On the more theoretical
side, the constructal theory has been proposed to guide the design [12].
However, parametric studies [13] and shape optimization [14,15] seem
more promising in producing optimized designs suited for large-scale
manufacturing.

This work builds on a previous study that used gradient-based shape
optimization to design parallel networks [14]. In that study, one single
objective function, a differentiable alternative to the maximum tem-
perature referred to as the p-mean, was considered. In this work, we
consider multiple objectives including p-mean, pressure drop and
temperature variance. We also expand the breadth of the optimization
technique by applying localized heat sources, comparing imposed
coolant flow rate to imposed pumping power, and allowing for channel
diameter to be a design variable.

The paper is organized as follows: in Sections 2 and 3, we sum-
marize the dimensionally reduced hydraulic and thermal models, and
the interface-enriched generalized finite element method (IGFEM) used
for the analysis of the embedded network designs. We then describe in
Section 4 the multi-objective optimization problem and the tools used
to solve it. Starting in Section 5, we present the optimal designs based
on various objective functions, constraints and thermal loads. In par-
ticular, we consider pressure drop across the network and p-mean of the
temperature as objective functions/constraints in Section 5. Localized
heat sources and pump power constraints are investigated in Section 6.
Lastly, the set of design parameters is extended to include the size of the
channel cross sections, and the temperature and pressure drop of the
optimal design are validated experimentally in Section 7.

2. Hydraulic model

The dimensionally reduced model used herein has been described
and validated in [14,16]. More information about the IGFEM used in
this work can be found in [13,14,17–19]. For completeness, we provide
in this section a brief summary of the thermal and hydraulic models,
and of the numerical method used to solve them.

For brevity, the word “channel” hereafter refers to a microchannel.
Consider a network of nch channels. Following the conventional analysis
of pipe networks [20], the flow rates in the embedded channels are
obtained using the classical hydraulics equations. Let g i( ) be the con-
ductance of channel i. The relation between the contribution of channel
i to the flow rates S S,j

i
k

i( ) ( ) of the fluid entering the channel nodes j k,
and the nodal pressures P P,j k is:
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The conductance of a channel with a square cross section of width D or
a circular cross section of diameter D, length L and a fluid kinematic
viscosity of ν is given by

=g CD
νL

,
4

(2)

where =C 1/28.46 and π/128 for square and circular cross sections,
respectively [21,22]. For rectangular cross sections, CD4 is replaced by
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5 , where a b, respectively denote the height and width

of the cross section [21]. The submatrices (1) for each channel can then
be assembled into a global system of equations

=G P S[ ]{ } { }, (3)

where G P[ ], { } and S{ } respectively denote the global conductivity ma-
trix, nodal pressure vector and sink/source mass flow rate vector.

An aqueous ethylene glycol coolant is used in this study. To simplify
the analysis, we assume that the fluid density is constant and equal to
the average value over the temperature range in this study, i.e.,
=ρ 1065 kg/m3. We further assume that the dynamic viscosity is uni-

form throughout the network, and has a temperature-dependence given
by [23]

= ⎛
⎝
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−
μ T T( ) 0.0069

273.15
,

8.3

(4)

where the temperature T is expressed in K and the dynamic viscosity in
Pa·s. Unless specified otherwise, the dynamic viscosity is evaluated at
the average temperature of the domain ∫〈 〉 =T TΩ, dΩ1

|Ω| Ω .

3. Dimensionally reduced thermal model and IGFEM

Instead of modeling the microchannels with finite diameters as in
[13,17,24], we perform the analysis of the microvascular panel in 2-D
and exploit the low diameter-to-length ratio to model them as line
sources/sinks [18,25–27]. Consider a channel with cross-sectional area
A, axial velocity u, average velocity uave, parametric coordinate along
the channel s, mass flow rate ṁ and coolant specific heat capacity cp. An
energy balance over an infinitesimal segment of the channel readily
yields the following expression for the heat flow rate per unit length:

′ =q mc T
s

̇ d
d

,p
m

(5)

where Tm is the mixed-mean fluid temperature defined as
∫=T uT Adm Au

1
ave

[28].

Let us denote by
∼κ xf h, ( ), and Tamb the thermal conductivity tensor

of the solid, the distributed heat source, the convection coefficient and
the ambient temperature, respectively. As shown in Fig. 1a, let the
boundary of domain Ω be consist of two parts, the Dirichlet boundary ΓT
with specified temperature T p( ) and the Neumann boundary Γq with
prescribed heat flux ″q p( ). Ω consists of a solid part Ωs and a network of
nch channels denoted by Γ f

i( ). We further denote the unit tangent vector
of channel i in the flow direction by t i( ), and the temperature field sa-
tisfying the Dirichlet boundary condition as T. With the assumption of
Tm being approximately equal to the wall temperatureTw, the weak form
of the problem is given by
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�∀ ∈v , where � is the space of weight functions and =γ m ċi i
p

( ) ( ) .
In this study, the finite-dimensional space � is constructed using the

interface-enriched generalized finite element method (IGFEM), which
allows for the use of a finite element mesh that does not necessarily
conform to the geometry of the channel network as shown in Fig. 1a.
The accuracy of the standard finite element method is recovered by
enriching the space with properly constructed functions along the in-
tersections of the channels with the elements to capture the weak dis-
continuity (i.e., gradient discontinuity) of the thermal field across the
microchannels. In addition to greatly simplifying the meshing process,
the IGFEM is particularly attractive for the shape-optimization study
described in the next section since the stationary nature of the mesh
avoids element distortion suffered by conventional finite-element-based
shape optimization techniques.

IGFEM was first introduced by Soghrati et al. [29,30] to handle
thermal problems with material interfaces. The original IGFEM handles
an element cut by a material interface by considering multiple scenarios
of intersection. Due to the large number of intersection scenarios for
multiple interfaces in a single element, an algorithm was devised to
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simplify its implementation. This results in an extended version of
IGFEM called hierarchical IGFEM [31,32]. In a nutshell, this algorithm
works by considering each material interface recursively as if other
material interfaces are not present. While the original IGFEM uses
linear Lagrangian enrichment functions, other kinds of enrichment
functions such as non-uniform rational B-splines (NURBS) [18,33] and
higher-order Lagrangian enrichment functions [34] have also been
developed.

For completeness, we next briefly introduce the IGFEM formulation,
and describe the construction of enrichment functions relevant to this
study. Let there be non original nodes in the non-conforming mesh, and
let us denote the Lagrangian shape function associated with the original
node i by xN ( )i . Further, let the nodal value at the original node beTi. At
the intersections between the channels and elements, examples of
which are shown in Fig. 1b and d, enriched nodes indicated by red dots
are introduced. Denote the number of enriched nodes in the non-con-
forming mesh by nen, and the enrichment function associated with en-
richment node j by ψj. We further introduce a generalized degree of
freedom at the enrichment node j β, j. The temperature field is then
approximated by

∑ ∑= +
= =

x x xT T N β ψ( ) ( ) ( ).h

i

n

i i
j

n

j j
( )

1 1

on en

(7)

Construction of the enrichment functions is illustrated by two sce-
narios shown in Fig. 1b and d. In the first scenario, an element is in-
tersected by two channels. Enriched nodes are introduced at the in-
tersections, and the integration subdomains (children elements) are
created using Delaunay triangulation. The use of such a triangulation
method greatly simplifies implementation, as the numerous intersection
scenarios do not need to be considered separately. Associated with each
of the enriched nodes 1–4 are the enrichment functions constructed
from linear Lagrangian shape functions contained in the integration
subdomains sharing the enriched nodes. Let us denote the shape func-
tion associated with node r in integration subdomain Ck by Nr

Ck. Then,
the enrichment function associated with the enriched node j is given by

∑=
∈

ψ N ,j
k S

J
C

j

k

(8)

where Sj is the set of integration subdomains sharing node j. For ex-
ample, the enrichment functions associated with enriched node 2 of the
first scenario (Fig. 1b) is = + +ψ N N NC C C

2 2 2 2
2 3 4.

In the second scenario where an element contains a branch point
(Fig. 1d), an additional enriched node is introduced at the branch point
along with the usual enriched nodes at the intersections with the ele-
ment boundary. By (8), the enrichment fucntion associated with en-
riched node 1 is = + + + +ψ N N N N NC C C C C

1 1 1 1 1 1
2 3 4 5 6. Details on the

quadrature and stiffness matrix assembly can be found in [19].

4. Optimization problem

In a typical design problem, multiple competing objectives need to
be considered subject to a set of constraints. Let nd and no respectively
be the number of design parameters and objectives. Denoting the design
parameters by = …d d d{ , , }n1 d , the nodal coordinates of the mesh by X ,
the constraint functions as g and the multiple objectives as a vector of
functions = …θ θ θ{ , , }n1 o , the optimization problem can be formulated as:

⩽

θ X d d X d

g X d d X d

T

T

min ( ( ( ), ), , ),

such that ( ( ( ), ), , ) 0.
d

(9)

Since θ in (9) ultimately depends only on d, we henceforth write
=θ θ d( ). Let F be the set of feasible solutions to (9). As defined in

[35], a solution F∈x dominates another solution F∈y if and only if
⩽x yθ θ( ) ( )i i for every i and <x yθ θ( ) ( )j j for at least one j. Further, if no

other solution inF dominates x , then x is Pareto optimal. The set of all
such solutions is called the Pareto optimal set and the Pareto optimal
front is the set of objective values corresponding to the solutions in the
Pareto optimal set. While some studies define a Pareto point as a Pareto
solution, we define a Pareto point as a point on the Pareto optimal
front. For brevity, we omit “optimal” when using the foregoing terms.

Fig. 1. (a) Schematic of the thermal problem, with the inset showing a portion of a non-conforming mesh. Element cut by multiple channels (b), and the associated integration
subdomains and enriched nodes (b). Element containing a branch point (d), and the corresponding integration subdomains and enriched nodes (e).
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4.1. Problem setup

The optimization problem setup shown in Fig. 2a simulates the
conditions experienced by a battery cooling panel in operation, which
are similar to those used in a previous study [14]. A carbon fiber/epoxy
matrix composite panel of size =L 0.15x m, =L 0.2y m is subject to a
uniform thermal load of = −xf ( ) 500 W m 2 unless stated otherwise. The
composite is assumed to be a balanced plain weave with an isotropic in-
plane conductivity. We set the thermal conductivity and thickness of
the panel to be − −2.7 W m K1 1 and 3mm, respectively.

Embedded in the panel of Fig. 2a is a parallel network with coolant
entering the inlet near the top left corner at a temperature of = °T 27 Cin

and exiting from the outlet near the bottom right corner. The parallel
networks chosen to be optimized are the two-, five- and eight-branch
networks shown in Fig. 2b–d with the corresponding non-conforming
meshes. 48 randomly generated initial designs for each network geo-
metry are used to address the problem of multiple local optima (some
examples are shown in Fig. 2e-h). The geometrical constraints described
in [14] are imposed to prevent the unphysical scenario of “self-
crossing” of channels during the optimization process.

Unless mentioned otherwise, an optimal design is obtained by pre-
scribing a mass flow rate of = × −ṁ 5 10in

4 kg/s (corresponding to a
volumetric flow rate of 28.2 ml/min) at the inlet of the network and a
zero reference pressure at the outlet. Under these boundary conditions,
the system of hydraulics equations is linear in P{ }. Since the viscosity is
assumed uniform across the channel network, the flow rates are in-
dependent of the viscosity. Hence the hydraulics equations are de-
coupled from the heat equation and the actual pressure drop can be
obtained after the heat equation is solved.

However, when the pump power is prescribed, the hydraulics and
heat equations are coupled if the dynamic viscosity is temperature
dependent. For this set of simulations, we decouple the equations by
fixing the viscosity at × −2.34 10 m /s6 2 . This value corresponds to the
viscosity evaluated at a temperature of °36 C, which lies within the
range of typical average panel temperatures.

4.2. Generation of Pareto front

Multiple methods have been proposed to generate a Pareto front
[36–40]. In the gradient-based optimization problem at hand, we adopt
two decomposition-based methods. The first approach is the ε-con-
straint method [39], which minimizes one objective function called the
primary objective function while imposing the others as constraints.
The original problem (9) is then converted to:

⩽
⩽ = …

d

g d
d

θ

θ ε i n

min ( ),

such that ( ) 0,
and ( ) , 2, , .

d

i i o

1

(10)

The lower bound on εi can be obtained by performing single-ob-
jective optimization on θi. When εi is sufficiently close to its lower
bound, the εi constraint becomes active. However, as εi increases, the
constraint eventually becomes inactive. Although simple in its im-
plementation, this method does not typically produce well-distributed
points on the Pareto front.

To overcome this limitation, we adopt as the second approach a
boundary intersection method referred to as the normalized normal
constraint (NNC) method [40]. The key idea of the method is to suc-
cessively restrict F to generate well-distributed solutions along the
Pareto front. As illustrated in Fig. 3, the method in the bi-objective case
can be summarized in the following two steps:

Step 1: Perform single-objective optimizations on θ1 and θ2. Let the
resulting solutions be denoted by ∗d1 and ∗d2 , respectively. Associated
with these solutions are the end points of the Pareto front in the
θ θ1 2-plane: ∗ ∗d dθ θ( ( ), ( ))1

1
2

1 and ∗ ∗d dθ θ( ( ), ( ))1
2

2
2 . Now, let us define the

normalized objective functions as
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Fig. 2. (a) Channel design problem setup. Two-branch (b), five-branch (c) and eight-branch (d) reference networks with corresponding fixed background mesh. Examples of two-branch
(e), (f) and five-branch (g), (h) initial designs.
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and the vector of normalized objective functions as =∼ ∼∼θ θ θ{ , }1 2 . In the
∼∼θ θ1 2 -plane, the end points of the Pareto front are now =∼ ∗θ d( ) (0,1)1

and =∼ ∗θ d( ) (1,0)2 .
Step 2: To obtain the j-th Pareto point, where = … −j N2, , 1, we solve

the following optimization problem:

⩽

− ′ − ⩾

∼

∼ ∼

d

g d

θ θ

θmin ( )

such that ( ) 0,

and { 1,1} ( ) 0,

d

j

2

(12)

where

≔
−
−

+
−
−

∼θ
N j
N

j
N1

(0,1)
1
1

(1,0).j (13)

To understand the second constraint entering Eq. (12), let us denote
the line connecting the two end points of the Pareto front in the nor-
malized coordinate system by ∼Lu as shown in Fig. 3b. Also, let ∼Lj be the
line perpendicular to ∼Lu and passing through the point

∼θj . We observe
that the second constraint restricts the solution to the side of the ∼Lj

indicated by the vector −{ 1,1}, leading to a smaller feasible regionF ′∼
j .

Minimization of
∼θ2 in this new feasible region then produces a point on

the Pareto front represented by the red dot in Fig. 3b. Since ∼Lj is shifted
in fixed increments along ∼Lu as j increases, uniformly distributed points
on the Pareto front are obtained. We note that the end point coordinates

of ∼Lu are not critical for generating the interior points of the Pareto
front. In fact, the role of ∼Lu is only to allow for more uniform dis-
tribution of the points on the Pareto front. After the points on the Pareto
front in the normalized coordinate system are obtained, the objective
functions are transformed back into the original coordinate system.

Both (10) and (12) are solved with the sequential quadratic pro-
gramming (SQP) algorithm [41] available in MATLAB. Since the
abovementioned methods do not guarantee the generation of Pareto
solutions, a Pareto filter described in [40] is used.

4.3. Objective functions

As indicated earlier, the primary objective function used in this
work is a differentiable alternative to the maximum temperature, the p-
mean of the temperature field, defined as

∫〈 〉 = ⎛
⎝

⎞
⎠

T T1
|Ω|

dΩ .p
h p

p

Ω
( )

1/

(14)

We set =p 8, the choice of which has been discussed in a previous
study [14]. The sensitivity analysis on 〈 〉T p can also be found in that
study.

Another objective function considered here is the pressure drop
across the network. Since the outlet pressure is set to 0, the pressure
drop is =P PΔ in, where Pin denotes the inlet pressure of the network.
For simplicity, consider a single design parameter d. We differentiate

Fig. 3. Illustration of the normalized normal constraint method in the bi-objective case showing (a) the generation of the two end points of the Pareto front represented by the black
diamonds, and (b) transformation to a normalized coordinate system followed by minimization of

∼θ2 in the new feasible region F ′∼
j to obtain a point (red circle) on the Pareto front.

Fig. 4. Two-branch reference network (a) and network optimized with =P 50o kPa (c), and their respective thermal fields (b) and (d).
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the system of hydraulics Eqs. (2) to obtain the following system of
equations that yields ∂ ∂P d(Δ )/ :

∂
∂

= −⎡
⎣
∂
∂

⎤
⎦

+ ∂
∂{ } { }G P

d
G
d

P S
d

[ ] { } .
(15)

Due to the evaluation of the viscosity at the average temperature
〈 〉 ∂ ∂T G d, [ ]/1 can be calculated as
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The pressure drop may also be imposed as a constraint, i.e., ⩽P PΔ Δ o,
where PΔ o is the desired bound on the pressure drop.

The last objective function considered is the variance used as a
measure of temperature uniformity in [15,10] and defined as

∫= −〈 〉( )σ T T T( ) 1
|Ω|

( ) dΩ .h2
Ω

( )
1

2
(17)

This expression can be rewritten as

= 〈 〉 −〈 〉σ T T T( ) ,2
2
2

1
2 (18)

which allows us to use the sensitivity analysis for 〈 〉T p derived in [14].
When the variance is chosen as the objective function, we want to
impose a constraint ⩽T T omax max, . Since this constraint cannot be han-
dled by a gradient-based algorithm, we replace, as before, Tmax with
〈 〉T p. However, by doing so, we are left with the problem of finding an
upper bound on 〈 〉T p corresponding to T omax, . To circumvent this issue,
we correct for the difference between Tmax and 〈 〉T p in “real time” by
adopting the algorithm proposed in [42]. Starting from an initial guess
c(0), we impose the following constraint at each iteration = …i n1, , :

〈 〉 ⩽c T T ,i
p o

( )
max, (19)

Fig. 5. (a)–(d) Two-branch optimal designs for ⩽PΔ 10, 30, 40, 50 kPa. (e) and (f) Five-branch optimal designs for ⩽PΔ 10, 40 kPa. (g) and (h) Eight-branch optimal designs for
⩽PΔ 10, 14 kPa. (i) Maximum temperature as a function of the actual pressure drop for the two-, five- and eight-branch designs. The temperatures associated with the reference designs

(Fig. 2(b)-(d)) are also indicated by horizontal lines for comparison.
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Fig. 6. (a) Tradeoff between Tmax and PΔ represented by the Pareto fronts for the two-, five- and eight-branch networks, respectively. Some of the designs on the fronts are shown in (b)-
(m). The two- and five-branch networks with the minimum value of Tmax on the fronts are shown in Fig. 5d and f.
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where = 〈 〉− −c T T/i i
p
i( )

max
( 1) ( 1).

5. Optimization results related to pressure and temperature

5.1. Pressure-temperature Pareto front from ε-constraint method

To obtain the pressure-temperature Pareto front, we perform opti-
mizations for different values of the upper bound of the pressure con-
straint Po. Comparison of the temperature field associated with the two-
branch reference network and that associated with the network opti-
mized with =P 50o kPa in Fig. 4 shows a substantial reduction in the
latter temperature due to the diagonal channels.

Fig. 5a–d presents the evolution of the optimal design for the two-
branch network for =P 10, 30, 40, 50o kPa. When Po is small, the op-
timal designs have small total channel length with only one interior
channel placed diagonally across the panel (Fig. 5a). As Po increases to
50 kPa, the optimal design becomes vertically oriented with three di-
agonally oriented interior channels spanning the panel (Fig. 5d). The
optimal designs of the five-branch case follow the same trend when Po

increases from 10 to 40 kPa as shown in Fig. 5e and f. On the other
hand, the eight-branch optimal designs for =P 10o and 14 kPa are both
diagonally oriented (Fig. 5g and h).

The pressure-temperature Pareto front is presented as a plot of
maximum temperature versus the actual pressure drop in Fig. 5i. Except
for the eight-branch optimal design with Po =10 kPa, all optimal de-
signs have a maximum temperature lower than the associated reference
designs. For all branches, the pressure constraint becomes active at
lower Po and inactive at higher Po. However, the value of Po beyond
which the pressure constraint becomes inactive decreases with in-
creasing number of branches. While the pressure constraint becomes
inactive at =P 40o kPa for the two-branch case, this transition occurs at
=P 14o kPa for the eight-branch case. Furthermore, the lower pressure

constraint seems to have a more detrimental effect on the performance
of the network as the number of branches increases. As evident in
Fig. 5i, the pressure and temperature range obtainable by the ε-con-
straint method is rather limited. As described next, this limitation can
be overcome by the NNC method.

5.2. Pressure-temperature Pareto front from NNC method

Fig. 6a presents the maximum temperature/pressure drop Pareto
fronts for the two-, five- and eight-branch networks. Each of these fronts
is characterized by two distinct regions separated by a kink. When the
pressure drop is low, the total length of the network is severely re-
stricted, hence producing networks with little coverage of the panels as
shown in Fig. 6b, c, f, g, j and k. Consequently, the temperature rises
rapidly with decreasing pressure drop. On the contrary, when the
pressure drop is allowed to be large, the networks have extensive
coverage of the panels as evident from Fig. 6e, i and m, resulting in low
maximum temperatures. For larger values of the pressure drop, in-
creasing the pressure drop yields a small decrease in the maximum

temperature due to the restriction imposed by the panel size on the total
network length. We note that this part of the front corresponds to the
results shown in Fig. 5i. The networks presented in Fig. 6d, h and l
corresponding to the kinks of the Pareto fronts thus represent a com-
promise between maximum temperature and pressure drop.

As the complexity of the network (i.e., the number of branches)
increases, the Pareto front progressively moves closer to the origin.
However, due to the saturation of the cooling effect of denser networks,
this effect is relatively limited. This saturation effect is most prominent
in the region before the kink, where the networks are restricted to a
small area, and hence are highly dense. Indeed, no improvement is
observed in the maximum temperature before the kink when the
number of branches increases from five to eight.

5.3. Minimization of variance

In this subsection, we consider the minimization of the variance
defined by (17) of the two-branch network subject to pressure and
temperature constraints: ⩽T T omax max, and ⩽P PΔ o, where = °T 60 Comax,

and =P 20o kPa. The maximum temperature constraint is imposed using
(19). In Fig. 7a and b, we show the optimal design with the lowest Tmax
and corresponding optimization history of the maximum temperature
and the standard deviation (square root of variance). The optimal de-
sign maximum temperature and actual pressure drop are respectively
59.4 °C and 18.5 kPa, which satisfy the imposed constraints.

We note, however, that the maximum temperature constraint al-
gorithm did not work well sometimes due to the changing values of c i( )

in (19), which causes premature termination of the optimization. This
prevents the enforcement of the constraint, and results in variances that
are higher than those arising from the minimization of 〈 〉T p. Therefore,
the minimization of 〈 〉T p appears to be a better choice for producing
designs with a low maximum temperature while maintaining a uniform
temperature distribution.

6. Optimization results related to operating constraints

6.1. Optimal designs with localized heat sources

Thermal management of lithium-ion batteries may need to consider
localized heating due to abuse events. Furthermore, uneven charge/
discharge profiles can cause concentration gradients in the electrolyte
to develop, which then leads to localized heat generation [43]. As
shown in this section, the computational design tool developed in this
study allows for such heating to be considered. Provided that the dis-
tribution of the heat source can be approximated by a differentiable
function, the sensitivity analysis described in [14] can be readily ap-
plied. For the purpose of demonstration, we define a heat source lo-
calized in nr regions as

Fig. 7. (a) Optimal design obtained by minimizing the temperature variance with the constraints: ⩽PΔ 20 kPa, ⩽T 60max °C; (b) corresponding optimization history.
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with ″qo related to the total heat source ∫=Q f x y( , )dΩΩ by the re-
lation ″∑ =q r Q(256 )/225o i i

2 . We choose Q to be the total heat generated
by the −500 W m 2 uniformly distributed heat source adopted in this
work, i.e., =Q 15 W.

As shown in Fig. 8a and b, we consider two sets of parameters: (i)
=x 0.0751 m, =y 0.11 m, =r 0.041 m corresponding to a localized heat

source in the middle, and (ii) =x 0.041 m, =y 0.041 m, =x 0.112 m,
=y 0.162 m, = =r r 0.0151 2 m, corresponding to two heat sources

localized near the bottom left and top right corners of the domain.
Fig. 8c–j compare the reference designs with the optimal designs for
both cases. The reference designs fail to eliminate the hot spots as ap-
parent in Fig. 8d and h. In contrast, the thermal fields associated with
the optimized designs in Fig. 8f and j show that the hot spots are re-
moved and the maximum temperatures are significantly reduced. In-
deed, the maximum temperatures of the optimal designs are about 20 °C
lower than those of the reference designs.

6.2. Optimal designs with imposed pump power versus imposed flow rate

Thus far, the shape optimization of the embedded network was
performed with a prescribed flow rate. In this section, we compare the

Fig. 8. Thermal loads on cooling panels represented by heat sources localized in the middle (a), and the top right and bottom left corners of the panel (b). Reference (c) and optimized (e)
designs for heat source (a) and the associated temperature distributions (d) and (f). Reference (g) and optimal (i) designs for heat sources (b) with their corresponding thermal fields in (h)
and (j).
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optimal designs obtained with a prescribed pump power to those de-
rived by prescribing the flow rate, both with constant viscosity eval-
uated at the reference temperature ( × −2.34 10 m /s6 2 at 36 °C). Fig. 9a
and b show the variation of the maximum temperature with respect to
the pump power and flow rate, respectively. At low power, it is ap-
parent that the fixed-power optimal designs have lower maximum
temperatures compared with the fixed-flow-rate counterparts. Similar
observation holds for the fixed-flow-rate optimal designs at low flow
rates. The optimal designs corresponding to low prescribed power
(Fig. 9c and g) are characterized by shorter channels since the pre-
scribed power is akin to a pressure constraint.

For the two-branch case, the maximum temperature curves coincide
with each other for high power as the fixed-power-optimal designs
become identical to the fixed-flow-rate optimal designs (Fig. 9d and f)
for sufficiently large power. The same trend holds for the fixed-flow-
rate optimal designs at sufficiently large flow rates. The curves asso-
ciated with the five-branch optimal designs are different, with the fixed-
power optimal designs having higher maximum temperatures com-
pared to the fixed-flow-rate optimal designs for ⩾W 20 mW. The rea-
sons for this difference are twofold: (i) the optimized design at higher
power (Fig. 9h) is not exactly the same as the design at high flow rates
(9j), and (ii) optimization at high prescribed power is not accompanied
by higher flow rates as shown in Fig. 9b. A closer examination of the
five-branch fixed-power curve yields that the flow rates of the last three

points corresponding to optimization at a power greater than 13 mW
stagnates at about 42ml/min, indicating that the flow rates chosen at
high power are only locally optimal.

7. Cross-sectional area as design parameter

7.1. Optimal designs

In Section 5, Fig. 6 showed that the pressure drop of the most
“balanced” designs at the kinks (i.e., designs (d), (h) and (l) of Fig. 6)
were rather insensitive to the number of branches. As shown next, the
geometry of the channel cross sections can be introduced as design
parameters to lower the pressure drop further. In this study, we fix the
height of the channels at 0.75mm but allow the width to vary between
0.35 and 1.5mm to facilitate the manufacturing of the optimal designs.
We then minimize 〈 〉T 8 of the eight-branch network subject to the
constraints ⩽PΔ 7 kPa and ⩽A 0.041f , where Af is the area fraction of
the network. The upper bound of Af is chosen to be the area fraction of
the fixed-cross-section optimal network in Fig. 6l, for which the
width= 0.75mm and =PΔ 10.6 kPa. The resulting variable-width op-
timal design is shown in Fig. 10a together with the widths of its
channels. It is observed that larger cross sections are favored for shorter
channels near the boundaries of the domain, hence lowering the pres-
sure drop and maximum temperature. Indeed, the pressure constraint of

Fig. 9. Maximum temperatures associated with the 2- and 5-branch optimal designs as a function of (a) pump power and (b) flow rates, when the pump power or the flow rate is specified
in the optimization. Designs optimized at low power (c), (g), and high power (d), (h). Designs optimized at low flow rate (e), (i), and high flow rate (f), (j).
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7.0 kPa is satisfied by the variable-width network. Therefore, introdu-
cing the cross-sectional geometry of the channels as design parameters
results in further reduction in pressure drop compared with the fixed-
cross-section optimization.

As shown in Fig. 10e, both variable-width and fixed-cross-section
optimal designs tend to equalize the flow rates in the interior channels
labeled in Fig. 10b and c. In contrast, the distribution of the flow rates
of the same channels of the reference network is rather non-uniform.

7.2. Validation

In this last section, we present a validation study of the variable-
width optimal design under the thermal loading conditions described in
the validation exercise of [14] and for the same flow rate of 28.2ml/
min. The temperature of the reference design (Fig. 11a) is significantly
less uniform than that of the optimized design (Fig. 11b). While the
average and maximum temperatures associated with the former are
respectively 30.4 °C and 37.2 °C, those associated with the latter are
27.9 °C and 32.9 °C, respectively.

Fig. 10. Introducing the width of the channel rectangular cross sections as design variables allows further reduction in pressure drop and improves thermal performance compared with
the fixed-cross-section case. (a) Widths in mm of the variable-width optimal design. (b) Variable-width optimal design with = ° =T P38.3 C, Δ 7.0max kPa and =A 0.041f . (c) Fixed-cross-

section optimal design (same as Fig. 6l) with = ° =T P41.9 C, Δ 10.6max kPa and =A 0.041f . (d) Reference design. (e) Flow rates in the 9 interior channels of (b)–(d).

Fig. 11. Computed temperature distributions associated with the reference eight-branch network with fixed cross section (a) and with the optimized eight-branch network with variable
channel diameters (b). (c) Laser-cut sacrificial template used to embed the optimal eight-branch network in the composite panel for the validation study. (d) Experimentally measured
temperature distribution of the optimized network.
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Using the laser-cut sacrificial template shown in Fig. 11c, a micro-
vascular composite panel with the optimized network was fabricated.
The thermal field measured experimentally with an infrared (IR)
camera shown in Fig. 11d agrees quite well with the simulated thermal
solution: the measured average and maximum temperatures are 30.0 °C
and 34.6 °C, respectively. The simulated average and maximum tem-
peratures are respectively lower than the corresponding measured
temperatures by 2.1 °C and 1.7 °C due to an assumption of the thermal
model, i.e, the mixed-mean temperature of the coolant is approximately
equal to the channel wall temperature [14,16]. In reality, the mixed-
mean temperature is lower than the wall temperature. Furthermore, the
measured pressure drop of 9.0 kPa is slightly higher than its simulated
counterpart of 8.15 kPa since the fluid model neglects the pressure loss
at the branches and corners of the channel network.

8. Conclusions

Building on a recently developed computational tool for the gra-
dient-based design of microvascular panels for active cooling applica-
tions, we considered two competing objective functions — p-mean of
the temperature and pressure drop — in the optimization of parallel
microchannel networks. The Pareto front associated with these com-
peting objectives was generated using the ε-constraint and NNC
methods. The former method generated a front that showed a rather
slow decrease in maximum temperature with respect to the pressure
drop. This front turned out to be part of the complete front generated by
the NNC method, which showed two distinct regions separated by a
kink. One region showed a slow decrease of the maximum temperature
as the pressure drop increased, consistent with the results obtained with
the ε-constraint method. The other region was characterized by a steep
slope indicating a rapid rise in the maximum temperature as the pres-
sure was reduced. The shape optimization tool was also applied with
variance of the thermal field as an objective function.

We also optimized the network designs in the presence of localized
heat sources. These optimal designs were superior to the “ad hoc” re-
ference designs under these specific thermal loads. Optimization with
prescribed pump power and constant fluid viscosity were also per-
formed. However, the tendency of designs optimized at higher pump
power to operate at lower flow rates and the constant viscosity as-
sumption placed power-based optimization at a disadvantage compared
with the more versatile fixed-flow-rate optimization.

Finally, we showed that the pressure drop of the network could be
improved substantially when the sizes of the channel cross sections
were introduced as design parameters. We then validated the variable-
width optimal design with experimental IR measurements.
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